Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Biomed Eng Online ; 21(1): 11, 2022 Feb 09.
Article in English | MEDLINE | ID: covidwho-2196293

ABSTRACT

BACKGROUND: Surges of COVID-19 infections have led to insufficient supply of mechanical ventilators (MV), resulting in rationing of MV care. In-parallel, co-mechanical ventilation (Co-MV) of multiple patients is a potential solution. However, due to lack of testing, there is currently no means to match ventilation requirements or patients, with no guidelines to date. In this research, we have developed a model-based method for patient matching for pressure control mode MV. METHODS: The model-based method uses a single-compartment lung model (SCM) to simulate the resultant tidal volume of patient pairs at a set ventilation setting. If both patients meet specified safe ventilation criteria under similar ventilation settings, the actual mechanical ventilator settings for Co-MV are determined via simulation using a double-compartment lung model (DCM). This method allows clinicians to analyse Co-MV in silico, before clinical implementation. RESULTS: The proposed method demonstrates successful patient matching and MV setting in a model-based simulation as well as good discrimination to avoid mismatched patient pairs. The pairing process is based on model-based, patient-specific respiratory mechanics identified from measured data to provide useful information for guiding care. Specifically, the matching is performed via estimation of MV delivered tidal volume (mL/kg) based on patient-specific respiratory mechanics. This information can provide insights for the clinicians to evaluate the subsequent effects of Co-MV. In addition, it was also found that Co-MV patients with highly restrictive respiratory mechanics and obese patients must be performed with extra care. CONCLUSION: This approach allows clinicians to analyse patient matching in a virtual environment without patient risk. The approach is tested in simulation, but the results justify the necessary clinical validation in human trials.


Subject(s)
COVID-19 , Humans , Respiration, Artificial , SARS-CoV-2 , Tidal Volume , Ventilators, Mechanical
2.
Comput Methods Programs Biomed ; 199: 105912, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-985139

ABSTRACT

BACKGROUND: Mechanical ventilation (MV) is a core intensive care unit (ICU) therapy. Significant inter- and intra- patient variability in lung mechanics and condition makes managing MV difficult. Accurate prediction of patient-specific response to changes in MV settings would enable optimised, personalised, and more productive care, improving outcomes and reducing cost. This study develops a generalised digital clone model, or in-silico virtual patient, to accurately predict lung mechanics in response to changes in MV. METHODS: An identifiable, nonlinear hysteresis loop model (HLM) captures patient-specific lung dynamics identified from measured ventilator data. Identification and creation of the virtual patient model is fully automated using the hysteresis loop analysis (HLA) method to identify lung elastances from clinical data. Performance is evaluated using clinical data from 18 volume-control (VC) and 14 pressure-control (PC) ventilated patients who underwent step-wise recruitment maneuvers. RESULTS: Patient-specific virtual patient models accurately predict lung response for changes in PEEP up to 12 cmH2O for both volume and pressure control cohorts. R2 values for predicting peak inspiration pressure (PIP) and additional retained lung volume, Vfrc in VC, are R2=0.86 and R2=0.90 for 106 predictions over 18 patients. For 14 PC patients and 84 predictions, predicting peak inspiratory volume (PIV) and Vfrc yield R2=0.86 and R2=0.83. Absolute PIP, PIV and Vfrc errors are relatively small. CONCLUSIONS: Overall results validate the accuracy and versatility of the virtual patient model for capturing and predicting nonlinear changes in patient-specific lung mechanics. Accurate response prediction enables mechanically and physiologically relevant virtual patients to guide personalised and optimised MV therapy.


Subject(s)
Respiration, Artificial , Ventilator-Induced Lung Injury , Computer Simulation , Humans , Intensive Care Units , Respiratory Mechanics
SELECTION OF CITATIONS
SEARCH DETAIL